专业性、开放式、国际化的财经教育出版机构
首页 >> 图书中心 >> 图书详情

对相邻部分之差和之商限制的分拆及相关q-级数等式

  • 丛 书 名

    其他著作与图书
  • 作   者

    :桑冬鸣
  • 定   价

    :¥45
  • 译   者

  • 版   次

    :1-1
  • I S B N

    :978-7-5654-4189-9
  • 开   本

    :16
  • 出版时间

    :2021-06-01
  • 页   码

    :98
严正声明:我社网站提供的教学资源仅供教师会员下载后用于教学需要,严谨私自传播、用于商业用途。凡有侵权行为的个人、法人或其他组织,必须立即停止侵权并对其因侵权造成的一切后果承担全部责任和相应赔偿,否则我们将依据中华人民共和国相关法律、法规追究其经济和法律责任。
天猫旗舰店购买淘宝购买当当购买
本系列其他图书

基于生态理论的县域营商环境评价体系研究——以河北省为例
定价:78元

2025年度四川省银发经济与养老金融发展蓝皮书
定价:88元

居民自有住房服务核算研究
定价:86元

东北全面振兴发展报告2024
定价:158元

东北全面振兴:演进、成就和未来
定价:198元
本专业其他图书

工会发展与劳动雇佣管制比较研究
定价:86元

公司理财(第六版)
定价:62元
内容简介
  Integer partition is one of the most fundamental research subjectsin combinatorics. The theory of partition has attracted the attention of many famous mathematicians and developed for centuries.
This is a book about integer partition identities. We startfrom some basic concepts in the theory of partition. Then we focus on two family of partition identities after Euler’spartition theorem. One family of identities involve partitions with restrictions on the differences of consecutive parts. Rogers- Ramanujan identities are the most important identities in this family. We present some of the most famous results: identities of Rogers-Ramanujan type, Schur’s theorem, G¨ollnitz-Gordon theorem as well as some overpartition analogues. The otherfamily of partition identities are about partitions with restrictions on the quotient of consecutive parts. We present some quite recent results involving lecture hall partitions, anti-lecture hall compositions, a-lecture hall partitions and truncated lecture hall partitions.
Over the years I have been assisted greatly by many persons and institutions. Among them, I wish to acknowledge the School of Mathematics in Dongbei University of Finance and Economics,the Center for Combinatorics in Nankai University and the National Science Foundation (Project No. 11501089). I am deeply indebted to my Ph.D. supervisor Professor Yongchuan Chen, who leads me into the fields of combinatorics and integer 2 Integer Partitions with Difference Conditions and Quotient Conditions and Related q-series Identities
partitions. I would like to show great appreciations to my wonderful research partner Professor Yahui Shi, without whose joint efforts I could not obtain the results in partition theory.

章节目录
  Chapter 1 Introduction 1
Chapter 2 Basic Concepts 5
2.1 Interger partitions and compositions . . . . . . . . . . 5
2.2 Ferrers graphs . . . . . . . . . . . . . . . . . . . . . 6
2.3 Generating functions . . . . . . . . . . . . . . . . . . 9
2.4 Overpartitions . . . . . . . . . . . . . . . . . . . . . 15
Chapter 3 Partition identities with difference conditions 19
3.1 Euler’s partition identity . . . . . . . . . . . . . . . . 19
3.2 Rogers-Ramanujan identities . . . . . . . . . . . . . . 22
3.3 Schur’s theorem and G¨ollnitz-Gordon theorem . . . . . . 31
3.4 Overpartition analogues . . . . . . . . . . . . . . . . 33
Chapter 4 Partition identities with quotient conditions 55
4.1 Lecture hall theorem . . . . . . . . . . . . . . . . . . 55
4.2 a-Lecture hall partitions . . . . . . . . . . . . . . . . 59
4.3 Anti-lecture hall compositions . . . . . . . . . . . . . 60
4.4 Truncated objects . . . . . . . . . . . . . . . . . . . 89
4.5 (k; l)-Lecture hall partitions . . . . . . . . . . . . . . 91
Bibliography 93
Index 98
有事Q我!
X关闭